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Abstract The “age” of a trace constituent is a common diagnostic of its transport in a geo-
physical flow. Deleersnijder et al. [2001a] and Beckers et al. [2001] analyzed tracers released
from point sources in unbounded advective-diffusive flows with uniform coefficients and noted a
surprising feature: the “mean tracer age” (the averaged elapsed time since tracer was injected)
is symmetric about the source, despite the directionality of the flow. Although the majority
of tracer is swept downstream, the small fraction that diffuses upstream does so at the same
average rate. We explore this symmetry physically by examining the random walk trajectories
that underlie the advective-diffusive description of transport. Using physical arguments we show
that symmetry in the tracer age field is a natural consequence of symmetry in the velocity and
diffusivity fields.
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1 Introduction

“Age” is a diagnostic timescale of transport used in geophysical systems as diverse as the ocean,
stratosphere, and ground water [e.g., the review of Waugh and Hall, 2002]. Common to these
systems is the advective-diffusive nature of the transport. Superposed on bulk motions are
mixing processes that necessitate a statistical treatment of transport. Not surprisingly, given
the widely varying contexts, precise definitions vary. In one usage, age is a property of the
tracer itself, and is defined as the elapsed time since tracer was injected from a source [e.g.,
Deleersnijder et al., 2001b]. We refer to this age as “tracer age” to distinguish it from the
“transit time” of an irreducible fluid element traveling to the interior from a specified boundary
region, a property of the underlying fluid that Deleersnijder et al. [2001b] has called ”water
age” and is often simply called ”age.” As a result of mixing the tracer content of a macroscopic
fluid parcel is comprised of a range of tracer ages, just as the parcel’s irreducible fluid elements
exhibit a range of transit times.

This note is largely motivated by recent work of Deleersnijder et al. [2001a] and Beckers
et al. [2001], who analyzed tracer age in idealized unbounded advective-diffusive flows with
uniform velocity and diffusivity. These authors noted the surprising result that the mean tracer
age is symmetric about a point source, despite the strong asymmetry in the tracer concentration
due to the directionality of the flow. Beckers et al. [2001] also noted the symmetry in numerical
models of the North Sea. The symmetry is counterintuitive because one expects that the rate of
tracer motion should reflect the relative difficulty of moving against the flow. Here, we present a
physical explanation for this symmetry by analyzing the random walks that underlie advective-
diffusive motion. We also compare and contrast different definitions of “age” in regards to this
symmetry.

2 Tracer Age

2.1 Definitions

The concept of “age” as a diagnostic of transport is widely used in geophysics [Waugh and
Hall, 2002]. However, definitions vary. The most direct definition in terms of tracer is what we
call here ”tracer age.” Tracer age is defined to be a property of the tracer itself, rather than
a property of the underlying fluid. (By contrast, Hall and Plumb [1994] and Haine and Hall
[2002] define related diagnostics as properties of the fluid, independent of particular tracers.)
Each tracer particle (e.g., molecule) is imagined to have a “clock” that is turned on at the time
the tracer is injected into the fluid. A macroscopic fluid parcel contains many particles with a
distribution of clock times, or “tracer ages.” The tracer age distribution can be characterized
by its temporal moments: the zeroeth moment (proportional to the tracer mole fraction), the
first moment (the “mean tracer age”), and higher moments (e.g., the variance of tracer age). A
tracer age distribution can be defined at each point in the domain. The distribution depends
both on the underlying fluid flow and on the sources and sinks of the tracer.

As a concrete example, consider an inert passive tracer injected into an advective-diffusive
flow by a point source at r′ with time-dependent source strength S(r′, t) having units of tracer
mass per time. At position r and time t the tracer mole fraction q(r, t) is comprised of tracer
injected at a range of past times. The contribution from the past time interval t′ + δt′ is
S(r′, t′)G(r, t|r′, t′)δt′, where G(r, t|r′, t′) is the response at (r, t) to an injection at r′ at a single
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past time t′; that is, S(r′, t) = ρ−1δ(r − r′)δ(t − t′), where ρ is the fluid density. G is the
Green’s function that carries tracer from (r′, t) to (r, t). The concentration q is the sum of these
contributions:

q(r, t) =
∫ t

−∞
dt′ S(r′, t′)G(r, t|r′, t′) (1)

=
∫ ∞

0
dξS(r′, t− ξ)G(r, t|r′, t− ξ) , (2)

where ξ ≡ t− t′ is the elapsed time since a contribution was injected into the flow, the ”tracer
age” of the contribution. The fraction of q(r, t) with tracer age in the interval ξ to ξ + δξ is

Z(r, t|r′, t− ξ)δξ =
S(r′, t− ξ)G(r, t|r′, t− ξ)

q(r, t)
δξ , (3)

thereby defining Z(r, t|r′, t − ξ), the “tracer age distribution.” This formulation is discussed in
detail by Holzer and Hall [2000] and for linear tracers is related to the “concentration distribution
function,” c(r, t|r′, t − ξ), of Deleersnijder et al. [2001b] simply by Z = c/q. By construction,∫∞
0 Zdξ = 1. The ”mean tracer age” is the first moment of this distribution: A(r, t, r′) =∫∞
0 ξZdξ.

We emphasize that Z and A are in general distinct from the “age spectrum,” G, and “mean
age,” Γ, of Hall and Plumb [1994] (also called the “transit time distribution” and “mean transit
time,” respectively). G and its first moment Γ are descriptors of the underlying fluid transport
and are independent of the properties of any particular tracer, while Z depends explicitly on the
tracer source, as seen in (3). G is the distribution of transit times since a fluid parcel made last
contact with some specified region, Ω, and Γ is the mean of the distribution. The relationship
of Z and A to underlying timescales of the flow and the conditions under which Z ≈ G are laid
out by Holzer and Hall [2000]. For example, Holzer and Hall [2000] show that for a constant
uniform source on a region Ω in a bounded domain Γ(r) ≈ 2(A(r) − A(Ω)). In more general
cases there is no such simple relationship. Further contrast and comparison of tracer and fluid
age is made in the summary and discussion section.

2.2 Examples

In order to gain insight to tracer age and illustrate tracer age symmetry in a simple context
we consider the following model: a passive inert tracer injected into an unbounded advective-
diffusive flow with uniform and constant velocity v and diffusivity κ. Tracer age in these simple
models is also analyzed by Deleersnijder et al. [2001b] and Beckers et al. [2001]. The point
source is taken to be the origin, and t′ = 0. The Green’s function is

G(r, t) =
(

1√
4πκt

)n

exp

(
−|r− vt|2

4κt

)
, (4)

where n is the dimensionality of the flow, and it is assumed that ρ = 1, giving G units of L−n.
We consider the cases n = 1 and n = 3 because they permit easy analytic solution.

If the source is S(t) = s0 for t ≥ 0 and S(t) = 0 for t < 0, then the steady-state response of
the tracer is q(r) =

∫∞
0 G(r, t)dt. One finds in 3-D
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q(r) =
s0

4πκr
exp

(
−(rv − r · v)

2κ

)
(5)

Z(r, ξ) =
r√

4πκξ3
exp

(
−(r − vξ)2

4κξ

)
(6)

and

A(r) =
r

v
(7)

where r = |r| and v = |v|. In 1-D the solutions are

q(x) =
s0

v
exp

(
−v(|x| − x)

2κ

)
(8)

Z(r, ξ) =
v√

4πκξ
exp

(
−(|x| − vξ)2

4κξ

)
(9)

and

A(x) =
|x|
v

+
2κ

v2
. (10)

(See also Deleersnijder et al. [2001a,b] and Beckers et al. [2001] for these and other related
solutions.)

Several features are worth noting. The first point, constituting the main focus of this work,
concerns the differences between q on the one hand and Z and A on the other. The concentration,
q, is highly asymmetric. For example, in 1-D, tracer completely fills the downstream domain
(i.e., q(x) = 1 for x > 0), while upstream tracer falls as e−|x|v/2κ. By contrast, both Z and A
are symmetric in x. This symmetry, noted by Beckers et al. [2001] in a study of North Sea
models and by Deleersnijder et al. [2001a] and Beckers et al. [2001] in the 1-D solutions above,
is counterintuitive. One expects that it is harder to move against the flow than with the flow,
and therefore it should take longer. One finds, instead, that while only a small fraction of the
tracer moves against the flow, this fraction requires no more time to travel an equal distance
than the larger fraction moving with the flow. This symmetry is discussed in detail in the next
section.

Before addressing the symmetry, however, we also note the qualitative difference between 1-D
and 3-D. Tracer completely fills the domain downstream in 1-D; that is, if one waits long enough,
q = 1 anywhere downstream. This is not the case in 3-D, where even directly downstream
q ∝ 1/r. In 3-D there is too much space to be filled by a point source. In 1-D A(x) is non-
zero everywhere, including at the point source. Because of diffusive motion tracer can make
an excursion downstream or upstream from the point source and then return to the source,
causing A(0) > 0. In 3-D, however, there is too much available space, and recirculation back to
the origin has infinitesimal influence. (See Appendix C of Holzer and Hall [2000] for a related
discussion.)
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3 Tracer Age Symmetry

In order to understand physically the counterintuitive tracer age symmetry we consider a La-
grangian description of transport. Advective-diffusive transport arises from the continuum limit
of such a description. Diffusion represents the aggregate effect of random motions of particles.
Advection is the net drift of particles in a direction of preferred probability for individual particle
steps.

For simplicity, we consider particles that move in discrete steps of unit magnitude every time
step δt, selecting randomly among the six possible directions ±x̂, ±ŷ, and ±ẑ in a 3-D rectilinear
lattice; that is, the single step probability density function (pdf) consists of six spikes, one for
each direction. Take the direction of the macroscopic velocity to be +x̂. Particles are more likely
to take +x̂ steps than −x̂ steps (i.e., the +x̂ spike of the pdf has greater magnitude). Steps in
±ŷ and ±ẑ all have equal probability. Step probabilities are assumed to be spatially uniform,
resulting in uniform macroscopic velocity and diffusivity. Because volume elements have unit
magnitude, the particle concentration at r = (x, y, z) is equal to the particle number at r. The
mean tracer age, A(r), is the average over the particles at r of the elapsed times since they were
injected at a source, which we take to be a point source at r′ = (x′, y′, z′) of magnitude S(r′, t)
(particle number per time).

Clearly q, Z, and A are symmetric in y and z, since there is no preferred direction in
this plane. However, it may seem surprising that Z and A are symmetric in x, despite the
directionality of the velocity (i.e., the preferred single step probability). Our physical argument
for the symmetry requires two ingredients: (1) For each sequence of particle steps (a ”trajectory”)
connecting r′ to r there is a “reflection” trajectory connecting r′ to −r. The reflection is obtained
by reversing the sign of all the steps. The existence of a reflection requires that the probability
for a step in an opposite direction be nonzero, although it can be arbitrarily close to zero.
(For example, the limit of small probability of a −x̂ step is the limit of small x diffusion. The
tracer age is still symmetric in x, but it is realized by a vanishingly small amount of tracer
at points x < x′.) (2) The steps comprising a trajectory are statistically independent. In the
argument that follows this independence allows us to reorder a step sequence with no impact on
its overall probability. Note that if steps were not statistically independent, but instead had a
finite decorrelation time, one could accumulate a sequence of steps over the decorrelation time
and consider the net displacement of the accumulation as the fundamental step.

Consider a sequence of n steps w1, ..., wn forming a trajectory W from r′ to r. If p(wj) is
the probability of the jth step, then P (W ) = p(w1) · · · p(wn) is the probability that trajectory
W is sampled by a particle. Now, in every trajectory there must be a subset of steps that, when
taken in sequence, forms a “sub-trajectory” directly from r′ to r. The remaining set of steps
form a sub-trajectory of zero net displacement. We consider the reordered sequence

W =
r′→r′︷ ︸︸ ︷

w1, .., wn−m,

r′→r︷ ︸︸ ︷
wn−m+1, ... , wn, (11)

where R ≡ w1, ..., wn−m is a “recirculation sub-trajectory” of zero net displacement and step
number n − m, and D ≡ wn−m+1, ..., wn goes directly to r in the minimum number of steps
m = |x|/δx. Because of the statistical independence of steps the reordering does not affect the
overall probability of W , and so P (W ) = P (R)P (D).

Each permutation of steps in (11) is also a trajectory from r′ to r and has the same prob-
ability. To obtain the full probability, P, of traveling from r′ to r in n steps, P (W ) must be
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multiplied by a factor B(n, m), the number of distinct permutations of n steps that result in a
net m steps in one direction. That is,

P = B(n, m)P (R)P (D) . (12)

P (D) depends on both the magnitude of r− r′ (a longer sequence of steps is required to reach
a greater |r − r′|) and its direction (steps against the flow are less likely than steps with the
flow). However, P (D) does not depend on the total step number n or, equivalently, on the
total duration of the trajectory nδt, as long as m ≥ n. Every trajectory to r must have the
sub-trajectory D, regardless of the total step number. The additional steps affect P (R) but not
P (D).

The expected number of particles q at r is the sum of the probabilities of all trajectories
to r of all step numbers n (equivalently, durations nδt) multiplied by the particle number,
S(r′, t− nδt)δt, emitted at the time the trajectory started at r′. That is,

q(r, t) =
∞∑

n=m

S(r′, t− nδt)δtB(n, m)P (R)P (D) (13)

(Note that, compared to Section 2, q and S here have units of particle number and particle
number per time, respectively.) The quantity S(r′, t − nδt)B(n, m)P (R)P (D)δt is the number
of particles that took time nδt to travel r′ to r. Therefore, the tracer age distribution, following
(3), is

Z(r, t) =
S(r′, t− nδt)B(n, m)P (R)P (D)∑∞

n=m δtS(r′, t− nδt)B(n, m)P (R)P (D)
. (14)

We now exploit the fact that P (D) does not depend on the length of a trajectory by moving
it outside the summation, leaving

Z(r, t) =
S(r′, t− nδt)B(n, m)P (R)∑∞

n=m δtS(r′, t− nδt)B(n, m)P (R)
. (15)

None of the factors in (15) depends on the direction from the point source at r′. Because
the velocity and diffusivity are assumed uniform, the probability of a trajectory of zero net
displacement, P (R), is actually independent of position. B(n, m) is the number of trajectories
that go r to r, and depends on |r − r′| through the step number m, but not on the direction.
Therefore Z is symmetric, as are all its temporal moments, including the mean tracer age A.

Let us summarize the essence of the tracer age symmetry. Every trajectory from r′ to
r has a reflection to −r, formed by reversing all the steps. If single step probabilities are
spatially uniform (equivalent to uniform velocity and diffusivity) and the steps are statistically
independent, then the sequence of steps in a trajectory can be reordered with no impact on the
trajectory’s total probability. One such reordering results in a recirculation sub-trajectory about
r′ of zero net displacement (same number of steps in all directions) followed by a direct flight
to r. But the recirculation is the same for the trajectory and its reflection. The difference in
the trajectory probabilities comes only from the difference in probabilities of the direct flights.
These direct flight probabilities do not depend on the overall trajectory duration, and thus the
difference in probability of a trajectory and its reflection does not depend on the duration. In
other words, the distributions by trajectory duration of trajectory probabilities to r and −r
differ by a single scaling factor, the difference in direct flight probability to r and −r. Upon
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dividing by the particle number to obtain Z, the distribution among the particles present, the
distribution and its reflection become identical.

3.1 One-Dimensional Examples

We now illustrate these arguments in a 1-D example. Consider steps of equal magnitude δx
every time step δt, with a probability p of a positive step and a probability q = 1 − p of a
negative step; that is, a single step probability distribution function (pdf) consisting of spikes of
unequal magnitude at ±1. (The macroscopic transport coefficients are related to the random-
walk parameters by u = (p − q)δx/δt and k = pqδx2/δt.) To arrive at x > 0 there must be
m = x/δx more positive steps than negative. Because of the statistical independence of steps,
the probability of any trajectory to x in time ξ = nδt, where n is the total step number, can be
written

P (x, ξ) = pmp
1
2
(n−m)q

1
2
(n−m) (16)

The probability for the reflection trajectory is obtained by reversing all the steps; that is, by
interchanging p and q in (16):

P (−x, ξ) = qmq
1
2
(n−m)p

1
2
(n−m) (17)

All other trajectories of duration ξ to x and −x are permutations of (16) and (17). Note that
the ratio

P (−x, ξ)
P (x, ξ)

=
(

q

p

)m

=
(

q

p

)|x|/δx

(18)

does not depend on ξ. Thus, the distributions by ξ of trajectory probabilities differ by the
constant scaling factor (q/p)|x|/δx, and Z is symmetric in x. That is,

Z(x, ξ) =
S(t− ξ)B(n, m)p

1
2
(n−m)q

1
2
(n−m)∑∞

n=m δtS(t− ξ)B(n, m)p
1
2
(n−m)q

1
2
(n−m)

(19)

is invariant under exchange of p and q. (Here, B(n, m) = n!/(1
2(n−m)!12(n+m)!) is the number

of distinct permutations of n total steps with a net m either positive of negative.)
As an additional 1-D random walk example that relaxes the earlier restriction to quantized

steps in x, consider the following: At each time step 1000 particles are given a random displace-
ment according to a single step pdf that is equal to unity for −0.45 < δx < +0.55 and zero
otherwise. Figures 1a and 1b show trajectories after 50 time steps. Also shown among all the
trajectories in Figure 1a are the subset that reach x = 1±0.25. Figure 1b shows those that reach
x = −1± 0.25. More particles follow trajectories reaching +1 than -1, because of the preferred
direction for single steps. We now form the tracer age distributions, Z(x, ξ), at x = +1 and
x = −1 by binning the number of particles at these positions according to their step number at
arrival, then dividing by the total number reaching the locations. These Z, shown in Figure 1c,
are symmetric, discounting statistical fluctuations.

The symmetry of Z(x, t) in the example above reflects the uniformity of the transport co-
efficients, expressed as velocity u and diffusivity κ macroscopically and by the single step pdf
microscopically. More generally, u and κ (and the single step pdfs) need not be uniform, but
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merely symmetric, to result in symmetric Z(x, ξ). Figure 2a shows Z at x = ±1 resulting from a
random walk with the single step pdf of Figure 1, except that now the pdf width increases sym-
metrically with distance from the origin according to 1+3(1−e−|x|). The symmetry of Z in x is
preserved. By contrast, when the width increases upstream but remains uniform downstream,
Z is asymmetric, as shown in Figure 2b.

4 Summary and Discussion

Deleersnijder et al. [2001a] and Beckers et al. [2001] noted a counterintuitive symmetry in
the ”age” of a tracer released from a point source in an advective-diffusive flow with uniform
coefficients. We have explained this symmetry physically by analyzing random walks with
statistically independent steps, a description that underlies advective-diffusive transport. Every
trajectory from a source r′ to r has a reflection to −r. The step sequence in a trajectory and
its reflection can be reordered with no effect on the probability of being sampled by a particle.
One such reordering results in a recirculation about r′ of zero net displacement followed by a
direct flight from r′ to r. But the recirculation is the same for the trajectory and its reflection.
The difference in the trajectory probabilities comes only from the difference in probability of the
direct flights. These direct flight probabilities do not depend on the overall trajectory duration
(transit time), and thus the difference in probability of a trajectory and its reflection does not
depend on the transit time. Therefore, the normalized distributions of transit times to r and
−r are identical.

It is worthwhile contrasting the symmetry properties of two different definitions of “age.”
The age symmetry of Deleersnijder et al. [2001a] and Beckers et al. [2001] arises in the case
where age is considered to be a property of the tracer itself—what we have called “tracer age”.
In an alternate use of the term “age,” the symmetry does not arise. It is common in ocean tracer
studies to consider the age to be a property of a water mass. One speaks of the elapsed time
(or distribution of times) since a water mass was last at the ocean surface [e.g., England, 1995;
Beining and Roether, 1996]. (For clarity, we have referred to the “transit times” for irreducible
fluid elements to travel from a specified boundary region to the interior, although simply “age”
is common.) Observable tracers allow an estimation of the transit time distribution and its
moments to varying degrees, depending on the tracer and the flow conditions [Waugh et al.,
2002].

To make explicit the different symmetry properties of these timescales consider an unbounded
1-D advective-diffusive system with uniform coefficients, the system analyzed by Deleersnijder
et al. [2001a]. The transit time of an irreducible fluid element is the time since it was last at
the origin. Note the distinction: transit time is always zero at the origin, whereas tracer age is
generally nonzero at the origin. In the simplest case of a tracer having a constant source, the
mean tracer age A(x) downstream is given by expression (10), whereas the mean transit time
(also known as the “mean age” and the “ideal age”) is Γ(x) = x/u. In this idealized case the
two timescales are related simply: Γ(x) = A(x) − A(0). (Contrast this with the relationship
noted in Section 2.1 for a conservative tracer with constant source in a bounded domain.)

We now ask what is the mean transit time upstream? One could attempt to construct the
transit time distribution G (also known as the age spectrum) following Hall and Plumb [1994]
by computing the response to a δ(t) boundary condition at x = 0 and looking at positive x with
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u < 0; i.e., the fluid flow running toward the origin from the parcel location. This yields

G(x, ξ) =
x√

4πkξ3
e−(x+uξ)2/4kξ (20)

However, one finds that
∫∞
0 Gdξ = e−2xu/k < 1. Unlike the case downstream, where

∫∞
0 Gdξ = 1,

the upstream transit time distribution is not normalized. A fraction of the fluid parcel that
increases exponentially with x has never been at the origin. The mean transit time solely
among the fluid fraction that has been at the origin is

∫∞
0 ξGdξ /

∫∞
0 Gdξ = x/u, identical to the

downstream solution. But over the entire fluid parcel the mean transit time since last contact
with the origin is infinite, since much of the parcel has never been at the origin. It is therefore
not symmetric. A second approach is to consider the steady-state solution to the equation for
the ideal age, τid, which downstream is equivalent to the mean transit time [e.g., Khatiwala et
al., 2001]:

∂τid

∂t
− u

∂τid

∂x
− k

∂2τid

∂x2
= 1 (21)

with τid(0, t) = 0. In steady-state, one finds τid = −x/u, again not symmetric about x = 0.
A negative timescale upstream to describe the elapsed time since the fluid made contact with
x = 0 is as plausible as an infinite timescale: most of the upstream fluid has never been at the
origin but will make contact with the origin at a future time; that is, a negative elapsed time.
We conclude that upstream in an unbounded domain the mean transit time is either infinite or
negative, depending on definition, but in any case is not equal to the downstream value. Eric
Deleersnijder (personal communications) has recently confirmed the asymmetry of the ideal age
(also known as the ”water age”), extending the analysis to include the transient solution.

It is perhaps not surprising that transport timescales should have peculiar properties in an
open domain (unbounded in some direction), given the continuous and unlimited source of new
fluid from upstream. Although an open approximation may be useful in certain instances, all
geophysical domains are ultimately closed; that is, the fluid has finite mass. This has considerable
bearing on the transport timescales discussed here. Given a constant source applied on some
boundary region and no sink, the tracer concentration and mean tracer age will eventually
increase everywhere linearly in time if the domain is closed. This is in contrast to the steady-
state tracer age in the open 1-D domain, where escape from the domain acts as an effective sink
for any finite sub-domain. On the other hand, the mean transit time reaches a finite steady
state even in a bounded domain, if the circulation is stationary. Sufficiently far enough back in
time, all fluid elements have made boundary contact.

Finally, we note that in a closed domain streamlines of the flow are closed. While “upstream”
and ”downstream” may be meaningful locally, the mean transit time upstream is not determined
locally, but is rather set by the remote boundaries that cause streamlines to close. In closed
domains the mean transit time is not symmetric. Downstream, parcels are dominated by fluid
that made recent boundary contact and are therefore young. In contrast, upstream parcels may
have had only weak diffusive contact locally with the boundary region. The majority of their
fluid elements have circulated about streamlines that may span much of the domain, and the
parcels are therefore much older.
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Figure 1: Position versus step number of 1000 trajectories starting at the origin. (a) All trajec-
tories (gray) and those that end at x = +1± 0.25 (black). (b) All trajectories (gray) and those
that end at x = −1± 0.25 (black). (c) Tracer age distributions at x = +1 (solid)

11



Figure 2: Tracer age distributions at x = +1 (solid) and x = −1 (dashed) for 5000 trajectories.
(a) The width of the single step pdf increases symmetrically with distance from the origin. (b)
The width of the single step pdf is constant downstream but increases upstream with distance
from the origin.
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